Fourth-Order Accurate Alternating Group Schemes for the Diffusion Problem
نویسندگان
چکیده
منابع مشابه
Asymptotically Stable Fourth-Order Accurate Schemes for the Diffusion Equation on Complex Shapes1
while constraining an energy norm of the error to be temporally bounded for all t . 0 by a constant proportional An algorithm which solves the multidimensional diffusion equation on complex shapes to fourth-order accuracy and is asymptotito the truncation error. cally stable in time is presented. This bounded-error result is In Section 3 it is shown how the methodology developed achieved by con...
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملHigh-accuracy Alternating Difference Scheme for the Fourth-order Diffusion Equation
In this paper, a highly accurate parallel difference scheme for the fourth-order diffusion equation is studied. Based on a group of new Saul’yev type asymmetric difference schemes, a high-order, unconditionally stable and parallel alternating group explicit scheme is derived. The scheme is fourth-order truncation error in space, which is much more accurate than the known methods. Numerical expe...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThird and Fourth Order Accurate Schemes for Hyperbolic Equations of Conservation Law Form*
It is shown that for quasi-linear hyperbolic systems of the conservation form Wt = —Fx = —AWX, it is possible to build up relatively simple finite-difference numerical schemes accurate to 3rd and 4th order provided that the matrix A satisfies commutativity relations with its partial-derivative-matrices. These schemes generalize the Lax-Wendroff 2nd order scheme, and are written down explicitly....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of u- and e- Service, Science and Technology
سال: 2015
ISSN: 2005-4246
DOI: 10.14257/ijunesst.2015.8.9.18